edexcel

Mark Scheme (Results)

Summer 2015

IAL Chemistry (WCH01/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.
www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2015
Publications Code IA041102*
All the material in this publication is copyright
© Pearson Education Ltd 2015

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:
i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear
ii) select and use a form and style of writing appropriate to purpose and to complex subject matter
iii) organise information clearly and coherently, using specialist vocabulary when appropriate

Section A (multiple choice)

Question Number	Correct Answer	Mark
$\mathbf{1}$	D	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{2}$	B	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{3}$	C	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{4}$	D	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{5}$	D	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{6}$	D	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{7}$	C	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{8}$	D	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{9}$	D	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{1 0}$	B	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{1 1}$	A	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{1 2}$	A	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{1 3}$	C	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{1 4}$	A	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{1 5}$	B	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{1 6}$	C	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{1 7}$	C	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{1 8}$	C	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{1 9}$	A	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{2 0}$	A	$\mathbf{1}$

TOTAL FOR SECTION A = 20 MARKS

Section B

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 1 (a) (i)}$	Alkane(s) IGNORE Any references to 'branched' / 'aliphatic' / 'hydrocarbons'		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
21(a)(ii)	2,3-dimethyloctane IGNORE Incorrect or missing punctuation		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
21(a)(iii)	1st mark: (Isomers) A and C NOTE If no isomers or isomers other than A \& C have been chosen, then award one mark max providing both $2^{\text {nd }}$ and $3^{\text {rd }}$ marking points are evident. 2nd mark: (They/A and C) have the same molecular formula / $\mathrm{C}_{10} \mathrm{H}_{22}$ / same number of C and H (atoms) 3rd mark: (They/A and C) have different structural formulae/displayed formulae / skeletal formulae / different structures/different arrangement of atoms IGNORE Any references to 'in space' / 'spatial' Any references to names Any references to general formulae	'Different chemical formulae'	3

Question Number	Acceptable Answers	Reject	Mark
21(a)(iv)	$\mathrm{C}_{12} \mathrm{H}_{24}$		
	1st mark: C_{12}	(1)	
	2nd mark: H_{24}	(1)	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 1 (b) (i) ~}$	A		$\mathbf{1}$
	OR		
B	ALLOW lower case letters IGNORE any names or formulae		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 1 (b) (i i) ~}$	C OR D ALLOW lower case letters IGNORE any names or formulae		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 1 (c)}$	Any one of:		1
	(It improves engine performance by)		
	Promoting efficient combustion OR Allowing smoother burning OR Increasing octane number OR Reduces knocking / prevents knocking OR Pre-ignition being less likely OR Being (more) efficient (fuels) OR Better burning / fuels easier to burn OR Combusting more easily OR Improving combustion / complete combustion OR Burns more cleanly OR More miles per gallon IGNORE any references to energy density / boiling temperature / volatility		

Question Number	Acceptable Answers	Reject	Mark
21(d)	[FIRST, check the answer on the answer line IF answer $=48000\left(\mathrm{~kJ} \mathrm{~kg}^{-1}\right)$ award (3) marks] $1^{\text {st }}$ two marks $\begin{equation*} \frac{1000}{170} \quad \text { (1) } \quad \times 8086 \tag{1} \end{equation*}$ OR $\begin{equation*} \frac{8086}{170} \text { (1) } \quad \times 1000 \tag{1} \end{equation*}$ NOTE: second mark in both cases dependent on first mark unless one minor transcription error in first mark e.g. use of 110 rather than 170 $\begin{align*} & \mathbf{3}^{\text {rd }} \text { mark } \\ & =47564.70588 \\ & =48000 \tag{1} \end{align*}$ Answer must be to 2 sf Ignore signs and / or incorrect units at any stage 48 scores (2) 47.56 scores (1) 1374.6 scores ($\mathbf{0}$) even if rounded to 2SF		3

(Total for Question 21 = 13 marks)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 2 (a) (i)}$	ΔH_{2} ALLOW $\Delta H_{2}=\ldots \ldots . .$.	$\mathbf{1}$	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 2 (a) (i i)}$	ΔH_{5} ALLOW $\Delta H_{5}=\ldots \ldots . .$.	$\frac{\Delta H_{5}}{2}$	$\mathbf{1}$

\(\left.$$
\begin{array}{|l|l|l|c|}\hline \begin{array}{l}\text { Question } \\
\text { Number }\end{array}
$$ \& Acceptable Answers \& Reject \& Mark

\hline \mathbf{2 2 (a) (i i i) ~} \& \frac{\Delta H_{6}}{2}

OR \Delta H_{6} / 2 OR \Delta H_{6} \div 2 OR 0.5 \Delta H_{6}\end{array}\right]\)	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 2 (a) (i v) ~}$	ΔH_{1} ALLOW $\Delta H_{1}=\ldots \ldots . .$.	ΔH_{7}	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
22(b)(i)	(The energy change / enthalpy change that accompanies / energy released / enthalpy released) the formation of one mole of a(n ionic) compound ALLOW as alternative for compound: lattice /crystal / substance / solid / product from its gaseous ions NOTE 'one mole of gaseous ions' scores max (1) (ie 2nd mark only available) IGNORE References to 'constituent elements' References to 'standard conditions' ALTERNATIVE RESPONSE If no mark(s) already awarded from above, can answer by giving:- energy change / enthalpy change per mole $\begin{equation*} \mathrm{Sr}^{2+}(\mathrm{g})+2 \mathrm{Cl}^{-}(\mathrm{g}) \rightarrow \mathrm{SrCl}_{2}(\mathrm{~s}) \tag{1} \end{equation*}$ ALLOW Any correct 'generic' equation with state symbols included	```'Energy / enthalpy required' / 'used' 'molecule' no \(\mathbf{1}^{\text {st }}\) mark 'gaseous atoms' no \(2^{\text {nd }}\) mark```	2

Question Number	Acceptable Answers	Reject	Mark
22(b)(ii)	[FIRST, check the answer on the answer line IF answer $=\mathbf{- 2 1 5 3}\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$ then award (2) marks, with or without working] 1st Mark: $\begin{align*} & \Delta H_{1}=\Delta H_{2}+\Delta H_{3}+\Delta H_{4}+\Delta H_{5}+\Delta H_{6}+\Delta H_{7} \\ & \mathrm{OR} \\ & \Delta H_{7}=\Delta H_{1}-\left[\Delta H_{2}+\Delta H_{3}+\Delta H_{4}+\Delta H_{5}+\right. \\ & \left.\mathrm{OR} \quad \Delta H_{6}\right] \\ & \Delta H_{7}=-829-[164+550+1064+ \\ & (122 \times 2)+(2 \times-349)] \end{align*}$ 2nd Mark: $\begin{equation*} \Delta H_{7}=-2153\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \tag{1} \end{equation*}$ NOTE: The following answers score (1) mark with or without working $+2153\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ $-2031\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ $-2502\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ $-2380\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ NO OTHER TEs are allowed on an incorrect expression involving ΔH_{7}		2

Question Number	Acceptable Answers	Reject	Mark
22*(c)	(Lattice energy of MgF_{2} more exothermic than that of NaF because) 1st mark: Mg^{2+} is smaller (than Na^{+}) ALLOW "Magnesium / Mg is smaller (than sodium / $\mathrm{Na})^{\prime \prime}$ 2nd mark: Mg^{2+} higher charge / higher charge density (than Na^{+}) ALLOW Any reference to Mg^{2+} and Na^{+}in answer for the $2^{\text {nd }}$ mark, unless nuclear charge mentioned 3rd mark: (So electrostatic forces of) attraction between ions stronger in MgF_{2} (than in NaF) ALLOW Stronger ionic bonds in MgF_{2} / stronger ionic bonding in MgF_{2} OR reverse arguments	No $1^{\text {st }}$ mark if only mention Mg atom or atomic radius " Mg^{2+} higher nuclear charge"	3

(Total for Question 22 = 11 marks)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 3 (a)}$	$\mathrm{C}_{n} \mathrm{H}_{2 n}$		$\mathbf{1}$
	ALLOW Letters other than n		

ALLOW: (partially) displayed or skeletal formulae throughout Q23(b)
IGNORE: additional incorrect non-organic products

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 3 (b) (i)}$	$\mathrm{CH}_{3} \mathrm{CH}_{3}$	$\mathrm{C}_{2} \mathrm{H}_{6}$	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 3 (b) (i i) ~}$	$\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl} / \mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{Cl}$	$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}$	$\mathbf{1}$

ONLY PENALISE ONCE ONLY in (b)(iii) \& (b)(iv) THE CONNECTIVITY BETWEEN C and OH if CLEARLY a C to H covalent bond has been drawn
$\left.\begin{array}{|l|l|l|c|}\hline \begin{array}{l}\text { Question } \\ \text { Number }\end{array} & \text { Acceptable Answers } & \text { Reject } & \text { Mark } \\ \hline \mathbf{2 3 (b) (i i i) ~} & \mathbf{H O C H}_{2} \mathrm{CH}_{2} \mathrm{OH} / \mathrm{CH}_{2} \mathrm{OHCH}_{2} \mathrm{OH} & \begin{array}{l}\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2} / \\ \mathbf{0 H C H}\end{array} \mathrm{CH}_{2} \mathrm{OH}\end{array}\right]: \mathbf{1}$.

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 3 (b) (i v) ~}$	$\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{Br} / \mathrm{CH}_{2} \mathrm{OHCH}_{2} \mathrm{Br}$	$\mathrm{BrCH}_{2} \mathrm{CH}_{2} \mathrm{Br} /$ $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OBr} /$ $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Br}_{2}$	$\mathbf{1}$

PENALISE USE OF Br instead of CI once only in parts (c)(i) \& (c)(ii)

PENALISE missing H atoms from displayed formulae once only in parts (c)(i) \& (c)(ii)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 3 (c) (i)}$		(1)	
(Major product)			

Question Number	Acceptable Answers	Reject	Mark
23(c)(ii)	 attack of chloride ion (1) 1st mark: Curly arrow from $\mathrm{C}=\mathrm{C}$ to H (in $\mathrm{H}-\mathrm{Cl}$) AND curly arrow from bond in $\mathrm{H}-\mathrm{Cl}$ to the Cl (dipole not reqd) Curly arrows must start from the bonds NOT the atoms 2nd mark: Structure of correct secondary carbocation 3rd mark: Curly arrow from anywhere on the chloride ion (including the minus sign) towards the $\mathrm{C}+$ on the carbocation NOTE: The chloride ion must have a full negative charge, but the lone pair of electrons on the Cl^{-} need not be shown ALLOW: TE on major product given in (c)(i) Skeletal formulae can be used Mark the three points independently	Full + and charges on HCl Incorrect polarity on HCl Extra / spare bond dangling from the C + carbon δ - on chloride ion instead of Cl^{-}	3

Question Number	Acceptable Answers	Reject	Mark
23(d)(i)	 TWO ' n ' in the equation and a correct formula (molecular or structural) for propene on the left-hand side of the equation One correct repeating unit, with the methyl branch shown ALLOW CH_{3} fully displayed or just as CH_{3} BOTH continuation bonds (with or without bracket shown) If $\mathrm{C}=\mathrm{C}$ bond left in polymer on righthand side, then max (1) Mark the three points independently		3

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 3 (d) (i i) ~}$	Non-biodegradable IGNORE References to toxicity of poly(propene) / flammability		1
	IGNORE Litter / pollution / waste of resources / costs	ALLOW People are reluctant to recycle OR Harmful to marine life / harmful to wildlife OR References to 'landfill' OR References to 'incineration' producing toxic fumes/toxic gases / CO $/$ Greenhouse gases OR References to use of energy/fuel used in transport (of waste) OR It takes a long time to degrade	

Question Number	Acceptable Answers	Reject	Mark
23(e)(i)	Both arrows in the correct direction AND $3 \mathrm{CO}_{2}$ and $3 \mathrm{H}_{2} \mathrm{O}$ in lowest box IGNORE state symbols, even if incorrect IGNORE extra O_{2} molecules in box or alongside arrows		1

Question Number	Acceptable Answers	Reject	Mark
23(e)(ii)	$\begin{aligned} & \mathbf{1}^{\text {st }} \text { mark } \\ & (-394 \times 3)+(-286 \times 3) \end{aligned}$ OR $\begin{equation*} =-2040\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \tag{1} \end{equation*}$ 2nd mark: $\Delta H_{f} \quad=-2040-(-2058)$ $\begin{equation*} =(+) 18\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \tag{1} \end{equation*}$ NOTE: The following answers score (1) mark with or without working $-18\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ $(+) 1378\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ $(+) 806\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ $(+) 590\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ $-4098\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ IGNORE units even if incorrect		2

(Total for Question 23 = 17 marks

Question Number	Acceptable Answers	Reject	Mark
24(a)	$\mathrm{F}(\mathrm{~g}) \rightarrow \mathrm{F}^{+}(\mathrm{g})+\mathrm{e}^{(-)}$ OR $\mathrm{F}(\mathrm{~g})-\mathrm{e}^{(-)} \rightarrow \mathrm{F}^{+}(\mathrm{g})$ Species State symbols IGNORE Any state symbols on electrons 2nd mark is dependent on the first NOTE: $\mathrm{F}(\mathrm{~g})+\mathrm{e}^{(-)} \rightarrow \mathrm{F}^{+}(\mathrm{g})+2 \mathrm{e}^{(-)}$ Use of 'Fl' max (1)	Electron affinity equation (0) overall Equations with $\mathrm{F}_{2}(\mathrm{~g})$ score (0) overall	2

Question Number	Acceptable Answers	Reject	Mark
24*(b)	1st mark: Number of protons increases / increasing nuclear charge / increasing effective nuclear charge	(1)	
IGNORE Just 'the atomic number increases'	2nd mark: Same shielding / same number of (occupied) shells / electron removed from the same shell / atomic radius decreases	'Shielding increases' (0) for 2nd mark	(1)
3rd mark: Greater (electrostatic) attraction between nucleus / protons and (outermost) electron	(1)		

Question Number	Acceptable Answers	Reject	Mark
24(c)*(i)	For aluminium	Mention of $\mathbf{2 p}$, no $1^{\text {st }}$ mark	2
	1st mark:		
	(Electron lost from) (3)p-subshell / (3)p-orbital		
	ALLOW		
	Correct electron configuration for Al:		
	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{1}$ or		
	[Ne] $3 \mathrm{~s}^{2} 3 \mathrm{p}^{1}$ or drawn as electrons-in-		
	boxes (1)		
	NOTE		
	First mark must refer to aluminium		
	2nd mark:		
	at higher energy / further from the		
	nucleus / (more) shielded (by 3s)		
	OR		
	Magnesium electron is at lower		
	energy / closer to the nucleus / less		
	shielded		
	IGNORE		
	References to stability of $3 s^{2}$ or full sorbitals / full s sub-shell in Mg		

Question Number	Acceptable Answers	Reject	Mark
24(c)*(ii)	For sulfur 1st mark: (Electron lost from a) pair of electrons / an orbital with electrons (spin-) paired / a full (p) orbital ALLOW Mention of (3) p^{4} OR Correct electron configuration for $\mathrm{S}: 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 s^{2} 3 \mathrm{p}^{4}$ or $[\mathrm{Ne}] 3 s^{2} 3 p^{4}$ or drawn as electrons-inboxes 2nd mark: (increase in) repulsion (allows e^{-}to be removed more easily) If no correct reference to Sulfur, then allow one mark for P (atom) has half-filled p sub-shell / p^{3} (arrangement) is stable.		2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 4 (d) (i i)}$	(Na) (AI) (Si) (P) (S) giant (giant) giant giant molecular molecular		$\mathbf{2}$
	ALLOW 'giant molecular' for Si ALLOW 'simple molecular' for P and/or S Five correct (2) Four correct (1)		

| Question
 Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- | :---: |
| 24(d)(iii) | (Na) (AI) (Si) (P) (S)
 high (high) high X low low | | $\mathbf{1}$ |
| | All four must be correct | | |
| IGNORE
 Any word written over \mathbf{X} in the Si
 box | | | |

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 4 (e) (i)}$	$\left(\frac{2.76}{23.0}\right)=0.12(0)(\mathrm{mol})$		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
24(e)(ii)	Moles $\mathrm{H}_{2}=1 / 2 \times \mathrm{mol} \mathrm{Na}$ Volume $\mathrm{H}_{2}=0.06(0) \times 24$ $\begin{equation*} =1.44\left(\mathrm{dm}^{3}\right) \tag{1} \end{equation*}$ ALLOW ECF from moles of Na in (e)(i) ALLOW Both marks if answer given $1440 \mathbf{c m}^{3}$ Correct answer, no working scores (2) NOTE: The following answers score (1) mark with or without working $2.88\left(\mathrm{dm}^{3}\right) / 2880 \mathrm{~cm}^{3}$ $5.76\left(\mathrm{dm}^{3}\right) / 5760 \mathrm{~cm}^{3}$ However, check as 2.88 could score 2 as a TE of 0.24 mol from (e)(i) IGNORE SF except 1 SF		2

Question Number	Acceptable Answers	Reject	Mark
24(e)(iii)	1st mark: Moles $\mathrm{NaOH}=$ moles of Na Can be implied by use of value from (e)(i) 2nd mark: $\begin{equation*} \left(\frac{0.12}{0.500}\right)=0.24(0)\left(\mathrm{mol} \mathrm{dm}^{-3}\right) \tag{1} \end{equation*}$ ALLOW TE from moles of Na in (e)(i) Correct answer, no working scores (2) IGNORE SF except 1 SF NOTE: TE from first mark to second mark only if answer from (e)(i) has been used in some way e.g. answer to (e)(i) $\times 2$ would not score mark 1, but could then be used to score mark 2 as a TE	No $2^{\text {nd }}$ mark if give wrong units, e.g "mol/dm ${ }^{-3 "}$ "dm ${ }^{3} / \mathrm{mol}^{\prime}$	2

(Total for Question 24 = 19 marks)

TOTAL FOR SECTION B $=\mathbf{6 0}$ MARKS
TOTAL FOR PAPER $=80$ MARKS

Pearson Education Limited. Registered company number 872828
with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom

